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Abstract

The bending and free vibration of an imperfectly bonded orthotropic piezoelectric rectangular laminates are
investigated using a three-dimensional state-space approach. The plate is assumed to have simple supports only, which
enables us to obtain a solution in a completely exact form. A general spring layer is adopted to model the bonding
imperfections. The laminated plate that is in a state of cylindrical bending is also considered as a particular case.
Numerical results are presented and some particular issues are discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials and structures have been extensively used in engineering industries and high-tech
areas due to their intelligent ability of sensing, actuating and controlling. A large amount of publications on
piezoelectric plates and shells can be found (e.g., Tzou, 1993; Rogacheva, 1994; Tani et al., 1998; Wang and
Yang, 2000; Ding and Chen, 2001; Fernandes and Pouget, 2002; Altay and Dokmeci, 2003 etc., and the
references cited therein). However, little work has been done on laminated piezoelectric plates and shells
with imperfect interfaces. On the other hand, laminated elastic structures featuring interlaminar bonding
imperfections have been of intense research interest recently (Liu et al., 1994; Cheng et al., 1996a,b, 2000a;
Librescu and Schmidt, 2001; Chen and Lee, 2004; Chen et al., 2003, 2004a,b).
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Multifarious flaws like microcracks, inhomogeneities and voids may be introduced into the bonding
layer of a laminated smart structure in the process of manufacture. The bonding strength may also become
weakened during the service time of a practical structure. Thus, it is imperative that the effect of imperfect
interfaces on the structural behavior should be accurately evaluated. In particular, with the increasing
application of piezoelectric actuators and sensors in damage detection of engineering structures, interla-
minar debonding in adaptive structures becomes a familiar failure phenomenon and has gained much
research interest. Seeley and Chattopadhyay (1999) considered the effect of actuator debonding of adaptive
composites using the finite element method. Icardi et al. (2000) presented a dynamic investigation of
adaptive cantilever beam with interlayer slips. Zou et al. (2000) made an excellent review on topics related
to damage identification and health monitoring for composite structures.

Recently, a three-dimensional exact analysis based on state-space formulations was proposed for a cross-
ply rectangular laminate with bonding imperfections described by a spring layer model (Chen et al., 2003).
Comparison with the extended zigzag plate theory (Cheng et al., 1996b) showed that although the plate
theory is very accurate for perfect laminates, it may become inaccurate when the bonding imperfections are
present. Investigation on laminated cylindrical panels also revealed that the high-order shell theory suffers
from inaccuracy due to the presence of imperfect interfaces (Chen et al., 2004a). Thus, exact solutions of
smart structures featuring interlaminar bonding imperfections become necessary. Moreover, these solutions
can also be used as benchmarks for clarifying any two-dimensional plate theories or numerical methods.
Wang and Zhong (2003) recently obtained an exact static solution of an infinite imperfect laminated
cylindrical shell with surface piezoelectric layers by using a transfer matrix method (Yue and Yin, 1998).

This study extends our previous analysis (Chen et al., 2003) to further take account of the coupling effect
between elastic deformation and electric field in a laminated piezoelectric rectangular plate. The analysis is
again based on the state-space formulations. It is emphasized here that the state-space approach is very
effective in studying laminated structures since the final solving equations always keep the same small scale
as that for a single-layered plate (Bahar, 1975). Several works on perfect piezoelectric structures using this
approach can be found in literature (Sosa, 1992; Lee and Jiang, 1996; Chen et al., 1997, 1998, 2001; Ding
et al., 1999). It will be shown that, compared to the analysis for the perfect laminates, only the so-called
interfacial transfer matrices should be integrated into the global transfer matrix.

To describe the imperfection of interlaminar bonding, the general spring layer model is adopted (Ab-
oudi, 1987; Hashin, 1990). It has been widely employed to study the effect of interfacial imperfections on the
static and dynamic behavior of laminated structures (Liu et al., 1994; Cheng et al., 1996a,b, 2000a; Icardi
et al., 2000). In this paper, in addition to the linear Hooke’s relations between mechanical displacements
and stress components at the interfaces, a similar relation between the electric potential and electric dis-
placement is further utilized (Fan and Sze, 2001).

In this paper, the problem of a piezoelectric laminate in cylindrical bending is also considered as a
particular case.
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Fig. 1. Geometry of a laminated rectangular plate and the Cartesian coordinates.
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2. Basic equations and the state-space approach

Consider an N-layered orthotropic piezoelectric rectangular plate as shown in Fig. 1. The constitutive
relations are (Ding and Chen, 2001)
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where u, v, and w are the displacement components in x, y, and z-directions, respectively; o;(t;;), D;, and ¢
are the normal (shear) stresses, electric displacements, and electric potential, respectively; and c;;, e;;, and ¢;
are the elastic, piezoelectric, and dielectric constants, respectively. The equations of motion in absence of
body forces are
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where p is the mass density. The equation of electric equilibrium is

D D D
ob, | 9D, , D =0. (3)

6x+6y+62

As shown in Lee and Jiang (1996), Chen et al. (1997, 1998), and Ding and Chen (2001), the following
state equation can be directly derived from Egs. (1) to (3):

0
& [l/l, v, O—zaDza Txzy Tyzy W,y d)]T = M[M, v, O—zyDﬂ Txzs Tyzy W, ¢]Ta (4)

where the matrix M is given in Appendix A. Here u, v, w, 0., 1., T,., ¢, and D, are termed as state variables,
from which the five induced variables oy, g,, Ty, D,, and D, can be determined from Eq. (A.3).
For the following simply supported boundary conditions (Lee and Jiang, 1996; Ding and Chen, 2001),

oo=v=w=¢=0 atx=0,aqa,

(5)
oo=u=w=¢=0 aty=0,b,
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W€ can assume

hu({) cos(mné) sin(nmy)

u ho({) sin(mné) cos(nmn)
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¢ hy/ el 16 @ (€) sin(mné) sin(nmn)

where £ =x/a, n =y/b, and { = z/h are dimensionless coordinates; m and n are integers; c%ll) and sg? etc.

represent the material constants of the first layer (the bottom layer), and w is the circular frequency. It can
be shown that the simply supported conditions in Eq. (5) have been satisfied automatically. Substituting Eq.
(6) into Eq. (4) yields

d -
VO =MV, )

where V(¢) = [(0),5(),5-(¢), D-(0), 7 (£), (L), w(£), $(£)]", and the constant coefficient matrix M is also
presented in Appendix A. The solution to Eq. (7) can be obtained as
V(C) = exp[M(C - Ckfl)]V(Ckfl) (Ckfl <UL k=1,2,.0.. aN)7 (8)
where {, =0, {, = z;/h = Z;‘.Zl hj/h, and hy is the thickness of the kth layer.
Setting { = {; in Eq. (8), gives
U= vy, 9)

where VY‘) “and V(()k) are the state vectors at the upper and lower surfaces, respectively, of the kth layer, and
Q, = exp[M({; — {4_1)] is the transfer matrix of that layer, which can be easily calculated using the built-in
functions in MATHEMATIC or MATLAB. Similarly, we get

Vk+1 Qk+1Vk+l . (10)
3. Imperfect bonding conditions

A general spring-layer model is adopted here to describe the imperfect bonding (Cheng et al., 1996a,b;
Fan and Sze, 2001):

ol = 0§k> =K® [W<k+1) — W(k>]7

Wl =l = KO — ), 11
_L.)(’lch) K}(k [+ 0], (1)
D+ D(k) —_x® [¢(k+1) _ d)(k)] at z =z,

where K,-(k) (i = x,y,z) are the bonding stiffness constants of the interface between the kth layer and (k + 1)th
layer, and K is the electric spring constant. Detailed discussion on the mechanical relations of the above
spring layer model can be found in Cheng et al. (1996a) and Librescu and Schmidt (2001), which is similarly
applied to the electric relation.
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In view of Eq. (6), Eq. (11) can be expressed as follows:

v = pvih, (12)
where P, the interfacial transfer matrix (Chen et al., 2003), is defined as
(1 0 0 0 RO 0 0 0]
0 1 0 0 0 R§f‘) 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
Pi=10 0 o0 0 1 0 0 0f (13)
0 0 0 0 0 1 0 0
0 0 —RW 0 0 0 1 0
10 0 0 —RM 0 0 0 1]
where RY = ¢V /[K®h) (i = x,y,2), and R® = &) /[K®¥)h] are dimensionless compliance coefficients of the
interfaces.

From Egs. (9), (10) and (12), a relation between the state vector at the upper surface of the (k + 1)th
layer and that at the lower surface of the kth layer is established as

(k1

ViTY = QuPQVy (14)
Continuing the above procedure, leads to the relation between the state vectors at the top and bottom
surfaces of the laminate

V(IN) _ TV(()I), (15)

where T = (sz v Q;P;1)Q, is the global transfer matrix for a laminated orthotropic piezoelectric plate
featuring interfacial bonding imperfections. In case of a perfectly bonded plate, all P; become unit, and we
have T = H _y Q; (Ding and Chen, 2001).

4. Bending and free vibration analysis

Consider the bending problem (w = 0) of a plate subjected to generally distributed normal pressures
p(x,y) and ¢g(x,y) on the bottom and top surfaces, respectively. These loads can be expanded in terms of
double sine functions as follows:

p(x7y) = C(lll>z Z Amn sin(mnf) sin(mm),
mO:OI nO:l (16)
q(x7y) = C(III)Zme,, Sin(mné) sin(mm),

=1 n=1

where [@, by = [4/c!} fo fo q(&,n)] sin(mné) sin(nnn) dédy. For an arbitrary couple of (m, ), the
surface mechanical boundary condltlons are
5:(0) = @y, (1) = by, Te(l) =7.(1) =7.(0) =7,.(0) = 0. (17)

On the other hand, there are two types of electric conditions frequently encountered in practice, i.e. the
open-circuit and closed-circuit conditions:

Open: D.(0) =D.(1) =0, Closed:  ¢(0) = ¢(1) = 0. (18)
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Thus we can obtain from Eq. (15)
-1
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w(0) Tyy Ty Toa Ty — T3

for the closed-circuit condition. In Egs. (19) and (20) T;
vector for any value of { can then be determined by

;; represents the elements of matrix T. The state

V() = expM({ = {y) <HQ, (21)

1

>V(()l) (Ck—lgégék;kzlaza"w]v)a

where Py is an 8th-order identity matrix.
Now consider the free vibration problem. If the plate is traction-free at the top and bottom surfaces, the
following frequency equations can be derived:

Ty Ty Ty Tsg
Ty Ty Ty Ty

=0 22
Isy Ts, Ts; Tsg (22)
Isy Ty Ter Teg

for the open-circuit condition, and

Iy Ty T Ty
Isy Tsy Tsy Tsy

=0 23
Tsi Teo T Ty (23)
Iyy Ty Tye Ty

for the closed-circuit condition.

It is known that when b — oo, the plate will be in a state of cylindrical bending, for which only two
displacements u and w, in x and z directions, respectively are non-zero, and both are independent of the
coordinate y. The corresponding state equation is given in Eq. (A.6) in Appendix A, and the analysis is very
similar to those presented above, which is omitted here for brevity.

5. Numerical examples
In all examples to be considered, we assume R =0 to avoid the material penetration phenomenon

(Cheng et al., 1996a,b). Note that the delamination problem of a laminated plate subjected to static normal
tension loads, i.e. upward at the top surface and downward at the bottom surface, can be considered by
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taking R®) # 0 (Shu and Soldatos, 2001). We also take R*) = R®) = R®) = R® for simplicity. In addition,
each layer in the laminate is considered to have the same thickness.

First, consider the free vibration of a simply supported four layered PZT-4/PVDF/PVDF/PZT-4 square
plate, with the PVDF layer oriented at 0° with respect to the x-axis. Only in this example, the material
constants in Heyliger and Saravanos (1995), which are listed in Table 1 for readers’ convenience, are
employed for comparison purpose.

The six lowest non-dimensional frequencies Q = why/pM /c(111> are given in Table 2 with
R = 0.5R® = R® = R being employed. The results for the perfect laminate, when transformed to the
frequency parameter /100, are found identical to those obtained by Heyliger and Saravanos (1995). It is
shown that with the increase of R, the frequency of the laminate decreases, due to the reduction of plate’s
rigidity that is induced by the interfacial imperfections.

We notice here that, like the elastic plate (Chen et al., 2003), the sensitivity of frequency to the interfacial
imperfection depends greatly on the frequency order. For example, the relative error defined by
(@|g_g6 — ®lg_g)/®|g_g-> for the first lowest natural frequency is only about —0.1% when a/h = 50, while it
becomes —6% or so for the fifth frequency, for both types of electric conditions. This property is very
important in practice because one can consciously select for consideration the vibrational modes whose
frequencies vary significantly with the interfacial flaws. This can improve the reliability and precision of
evaluation of engineering structures.

The lowest frequency parameters Q" = 100wh4/ p) /0(111) of rectangular PVDF laminates with a/h = 10
are given in Table 3 for several different layup schemes. In this example, we assume a uniform imperfection,
ie. R = R® =...R™) = R Hereafter, the material constants of PVDF and PZT-4 in Cheng et al. (2000b)
are adopted, which are also listed in Table 1. The formulations for the laminate in cylindrical bending are
directly employed to calculate the results for b/h — co. Just as the elastic case, the frequencies of the
rectangular laminate converge rapidly to that of the laminate in cylindrical bending when b/a increases. In
fact, the lowest natural frequency of the rectangular laminate of 5/a = 5 has a relative error smaller than

Table 1
Material constants of PZT-4 and PVDF*

Property Heyliger and Saravanos (1995) Property Cheng et al. (2000b)

PZT-4 PVDF PZT-4 PVDF
E, (GPa) 81.3 237.0 c11 (GPa) 139 238.24
E, (GPa) 81.3 23.2 ¢y (GPa) 139 23.6
E; (GPa) 64.5 10.5 ¢33 (GPa) 115 10.64
Via 0.329 0.154 ¢ (GPa) 77.8 3.98
Vi3 0.432 0.178 c1;3 (GPa) 74.3 2.19
Va3 0.432 0.177 ¢ (GPa) 74.3 1.92
Gy (GPa) 25.6 2.15 cyy (GPa) 25.6 2.15
Gi3 (GPa) 25.6 4.4 css (GPa) 25.6 44
Gy, (GPa) 30.6 6.43 ces (GPa) 30.6 6.43
e (C/m?) -5.20 -0.13 e3 (C/m?) =52 -0.13
ey (C/m?) -5.20 -0.14 ey (C/m?) =52 —-0.145
ey; (C/m?) 15.08 —-0.28 e33 (C/m?) 15.1 -0.276
ey (C/m?) 12.72 -0.01 ey (C/m?) 12.7 —-0.009
€1s (C/mz) _b b €ls (C/Inz) 12.7 -0.135
8]]/80C 1475 12.5 £1|/£oc 1475 12.5
€2/ €0 1475 11.98 £2/¢0 1475 11.98
€33/ 1300 11.98 &33/¢0 1300 11.98

#The densities of PZT-4 and PVDF are assumed to be identical, as done in Heyliger and Saravanos (1995).
® The value of e;5 was not given in Heyliger and Saravanos (1995), but use was made of e;5 = e,4 in their calculation (Heyliger, 2003).
°gy = 8.85 x 10712 (F/m) in Heyliger and Saravanos (1995), and & = 8.854185 x 10~'2 (F/m) in Cheng et al. (2000b).
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Table 2
First six non-dimensional frequencies (Q = why/p)/ c%?) of a four-ply square laminate (m =n = 1)

Electric alh R 1 2 3 4 5 6
condition
Open 4 0.0 0.156506 0.516113 0.728854 0.883968 0.976442 1.09364
0.2 0.154778 0.514975 0.724029 0.882140 0.975443 1.08652
0.4 0.153133 0.513859 0.719393 0.880264 0.974430 1.07985
0.6 0.151565 0.512766 0.714937 0.878342 0.973401 1.07359
50 0.0 0.00194510 0.0440889 0.07658438 0.428759 0.607858 0.975741
0.2 0.00194445 0.0440880 0.0765842 0.424169 0.594852 0.975513
0.4 0.00194381 0.0440871 0.0765837 0.419713 0.582596 0.973402
0.6 0.00194316 0.0440862 0.0765832 0.415386 0.571027 0.966228
Closed 4 0.0 0.156223 0.516037 0.728853 0.883944 0.973696 1.09068
0.2 0.154501 0.514901 0.724026 0.882115 0.972665 1.08367
0.4 0.152862 0.513788 0.719390 0.880239 0.971618 1.07712
0.6 0.151299 0.512697 0.714933 0.878316 0.970554 1.07096
50 0.0 0.00194504 0.0440657 0.0765329 0.428400 0.606717 0.947783
0.2 0.00194439 0.0440644 0.0765315 0.423822 0.593781 0.947241
0.4 0.00194375 0.0440631 0.0765301 0.419377 0.581588 0.946643
0.6 0.00194310 0.0440617 0.0765287 0.415061 0.570077 0.945944
Table 3

Lowest frequency parameters | Q" = IOOwh\/p“)—/cﬂ) > of simply-supported rectangular PVDF laminates with uniform interfacial

imperfection (a/h = 10, m =n = 1)*

Stacking sequence® b/h R=0 R=02 R=04 R=06
[0/90°] 10 6.60800 6.59228 6.57683 6.56164
50 4.34998 4.34214 4.33441 4.32678

100 4.31881 4.31107 4.30344 4.29591

200 4.31171 4.30399 4.29638 4.28887

300 4.31042 4.30271 4.29510 4.28760

00 4.30940 4.30170 4.29409 4.28659

[0/90/0°] 10 2.42954 2.42627 2.42301 2.41977
50 2.10358 2.10027 2.09697 2.09369

100 2.09888 2.09556 2.09227 2.08899

200 2.09776 2.09445 2.09116 2.08788

300 2.09756 2.09425 2.09096 2.08768

0 2.09740 2.09409 2.09079 2.08752

[0/90/0/90°] 10 7.67854 7.55903 7.44595 7.33878
50 5.21066 5.13375 5.06083 4.99155

100 5.18333 5.10653 5.03370 4.96452

200 5.17742 5.10066 5.02786 4.95870

300 5.17637 5.09962 5.02682 4.95767

o0 5.17554 5.09879 5.02600 4.95685

[(0/90),0°] 10 2.51310 2.50768 2.50229 2.49695
50 2.01755 2.01283 2.00815 2.00350

100 2.01185 2.00713 2.00246 1.99781

200 2.01056 2.00585 2.00118 1.99654

300 2.01033 2.00562 2.00095 1.99631

00 2.01015 2.00544 2.00076 1.99612

#Open electric condition at both surfaces.
®The stacking sequence is from the top to bottom.
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1% when compared to that of the laminate in cylindrical bending, either for the perfect case or for the
imperfect cases.

Now we turn to consider the bending problem of a three-ply ([0/90/0°]) PVDF laminate in cylindrical
bending with a uniform interfacial imperfection (R = R® = R) subjected to a sinusoidal pressure
q = qo sin(n€) applied at the top surface. The closed-circuit electric condition is adopted at both surfaces.
Since the present analysis is completely exact, we present the numerical results in Tables 4-12, which can
serve as benchmarks for future study using different methods. For the purpose of comparison, the nine field

variables are all non-dimensionalized according to Cheng et al. (2000b):

Table 4

Amplitude of in-plane mechanical displacement #; x 10" for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under
sinusoidal mechanical load

4 a/lh=4 a/h =10
R=0.0 R=02 R=04 R=0.6 R=0.0 R=02 R=04 R=0.6
0 0.232394 0.232830 0.230608 0.237176 0.968681 0.969761 0.969730 0.973597
0.1 0.118249 0.118231 0.116713 0.120162 0.692871 0.693058 0.692330 0.694815
0.2 0.044356 0.043914 0.042858 0.043848 0.454035 0.453346 0.451923 0.453077
0.3 —-0.014791 -0.015771 —0.016446 —-0.018107 0.239388 0.237790 0.235636 0.235441
1/3 —0.034788 —-0.036001 —0.036544 —-0.039283 0.171200 0.169284 0.166871 0.166211
1/3 —0.034788 —-0.032871 —-0.030336 —-0.029891 0.171200 0.172850 0.173996 0.176906
0.4 —-0.017320 —-0.016186 —-0.014679 —0.014430 0.103637 0.104587 0.105006 0.107285
0.5 0.006936 0.006985 0.007274 0.006768 0.002928 0.002840 0.002207 0.003488
0.6 0.029902 0.028909 0.028299 0.026442 —0.098030 —-0.099151 —0.100802 —0.100589
2/3 0.045041 0.043344 0.042283 0.039150 —0.166036 —0.167849 —-0.170162 —-0.170708
2/3 0.045041 0.046455 0.048526 0.048390 —-0.166036 —0.164288 —-0.163040 —0.160043
0.7 0.023830 0.024899 0.026261 0.026628 —0.234454 —-0.233043 —-0.232192 —-0.229384
0.8 —0.038968 —-0.038716 —0.039082 —0.037406 —0.449916 —0.449472 —0.449763 —0.447478
0.9 —-0.117503 —0.117942 —0.119880 —0.116849 —0.689790 —-0.690285 —-0.691694 —0.689890
1 —0.238873 —-0.240117 —0.244011 —-0.239107 —-0.966919 —0.968372 —-0.970934 —0.969595
Table 5

Amplitude of transverse mechanical displacement i3 x 10! for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under
sinusoidal mechanical load

¢ a/h=4 a/h =10
R=00 R=02 R=04 R=0.6 R=00 R=02 R=04 R=06

0 1.854100 1.860678 1.849267 1897279  9.517795 9.546966  9.569539  9.615148
0.1 1.857581 1.864706 1.857378 1.897753 9.523759 9.553156  9.577262  9.619808
02 1.861251 1.868921 1.865701 1.898382  9.528497 9.558113 9.583750  9.623223
0.3 1.866469 1.874685 1.875609 1.900505 9.532625 9.562455 9.589620  9.626005
173 1.868622 1.877018 1.879337 1.901606  9.533936 9.563836  9.591510  9.626862
0.4 1.873836 1.882620 1.887750 1904800  9.536587 9.566640  9.595347  9.628646
0.5 1.884152 1.893497 1.902798 1912054  9.541026 9.571304  9.601551 9.631768
0.6 1.897425 1.907310 1.920760 1922202 9.546023 9.576517 9.608298 9.635426
23 1.907912 1.918147 1.934371 1930554  9.549659 9.580295 9.613095 9.638158
0.7 1.913602 1.924026 1.941652 1935216  9.551493 9.582205 9.615521 9.639559
0.8 1.931883 1.942857 1.964634 1950419  9.556793 9.587732  9.622590  9.643552
0.9 1.951690 1.963203 1.989079 1967164  9.561476 9.592635 9.629024  9.646913
1 1.971639 1983682 2.013625 1984056  9.564924  9.596297 9.634209  9.649024
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Table 6

Amplitude of transverse shear stress 7,3 for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under sinusoidal mechanical
load

¢ a/h=4 a/h =10
R=0.0 R=02 R=04 R=0.6 R=0.0 R=02 R=04 R=0.6

0 0 0 0 0 0 0 0 0

0.1 1.001178 1.002834 0.995679 1.017665 1.941529 1.943205 1.943672 1.948374
0.2 1.464300 1.465111 1.454160 1.482135 3.281319 3.282602 3.281912 3.288143
0.3 1.545873 1.543098 1.530813 1.550071 4.090574 4.089378 4.085866 4.090490
173 1.496079 1.491330 1.479117 1.491713 4.250610 4.248106 4.243265 4.246638
0.4 1.483020 1.479285 1.471130 1.477687 4.270553 4.268418 4.264885 4.266271
0.5 1.473960 1.471211 1.468474 1.465751 4.280400 4.278619 4.276840 4.275063
0.6 1.476639 1.474270 1.476351 1.463748 4.266209 4.264545 4.264283 4.259105
2/3 1.484710 1.482265 1.487317 1.467595 4.243313 4.241595 4.242217 4.234630
0.7 1.548002 1.548146 1.557812 1.535948 4.085072 4.084654 4.086555 4.080321
0.8 1.492833 1.497233 1.513371 1.490558 3.280013 3.281958 3.285874 3.282864
0.9 1.032403 1.036744 1.049868 1.033823 1.942254 1.944334 1.947620 1.946666
1 0 0 0 0 0 0 0 0

Table 7

Amplitude of transverse normal stress 733 for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under sinusoidal mechanical
load

¢ alh=4 a/h =10
R=0.0 R=02 R=04 R=0.6 R=0.0 R=02 R=04 R=0.6

0 0 0 0 0 0 0 0 0
0.1 0.043681 0.043763 0.043455 0.044438 0.032191 0.032223 0.032235 0.032317
0.2 0.143333 0.143528 0.142491 0.145530 0.115700 0.115783 0.115796 0.116058
0.3 0.263813 0.263952 0.261988 0.266984 0.232817 0.232907 0.232858 0.233299
1/3 0.303718 0.303760 0.301474 0.306892 0.276538 0.276609 0.276517 0.277000
0.4 0.381685 0.381506 0.378689 0.384608 0.365790 0.365813 0.365633 0.366166
0.5 0.497726 0.497296 0.494056 0.500129 0.500171 0.500133 0.499870 0.500398
0.6 0.613521 0.612894 0.609631 0.615107 0.634484 0.634393 0.634098 0.634517
2/3 0.691027 0.690275 0.687200 0.691832 0.723614 0.723488 0.723197 0.723483
0.7 0.730816 0.730035 0.727156 0.731241 0.767268 0.767131 0.766854 0.767067
0.8 0.852641 0.852070 0.850270 0.852550 0.884284 0.884176 0.883997 0.884069
0.9 0.954817 0.954616 0.954025 0.954727 0.967789 0.967750 0.967692 0.967704
1 1 1 1 1 1 1 1 1

_ u _ w _ [ _ gy _ o,

Ml—Pa, MS_Pa’ Tll—Pc*7 Tzz—Pc*, TB_PC*’ 9

— sz — (],’78* = Dx ~ Dz ( )

T13 = ) b =7 D1:_7 D3:_a

Pc* Pac? Pe* Pe*

where P = —¢qq/c* with ¢* =1 N/m? and ¢ = 1 C/m>.

It is seen that our results for the perfect laminate agree well with those in Cheng et al. (2000b). The effect
of interfacial imperfections on the elastic field is similar to that reported for the elastic plate (Chen et al.,
2003), although it is less significant because of the relatively small values of R assumed in this paper. Hence,
the reader is referred to the paper of Chen et al. (2003) for related discussions. As regards the electric field,
however, the effect is very significant, as shown in Tables 8, 9 and 12.
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Table 8
Amplitude of electric potential @ x 10° for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under sinusoidal mechanical
load

4 a/h=4 a/h =10
R=00 R=02 R=04 R=0.6 R=0.0 R=02 R=04 R=0.6

0 0 0 0 0 0 0 0 0
0.1 1.397073 3.490903 19.35737 -10.42074 1.975772 2.826462 8.749449 —-3.137531
0.2 2.416957 6.615673 3845022  -21.30444  3.458134 5.158595 17.00909 —6.779445
0.3 3.241167 9.568718 57.57171 —32.54382 4.528110 7.078254 24.86667 —10.84987
1/3 3.482146 10.52673 63.98121 -36.37336  4.802466 7.635944 2740699  —-12.29351
1/3 3.482146 0.329903 -26.43133 25.12498 4.802466 3.570761 —6.153121 13.94596
0.4 3.829353 2.123209  -13.71729 17.35940  5.265849 4.605596 —-1.148123 10.98749
0.5 4.040864 4.491771 4.959642 5.445563  5.528004 5.722303 5917716 6.114255
0.6 3.874457 6.479092 23.25214 —6.855779  5.270939 6.317346 12.45945 0.714481
2/3 3.550169 7.594892 35.28289 —-15.31020 4.810431 6.423937 16.53186 —-3.180923
2/3 3.550169 -3.542129  -57.04529 4325955  4.810431 1.969969 -17.80807 21.88543
0.7 3.312052 -3.055150 -51.09874 38.97535 4.536211 1.981663 -15.81117 19.90095
0.8 2.485030 —-1.734398  —-33.59028 26.14239  3.465582 1.765867 -10.08390 13.70537
0.9 1.444454 —-0.656999 —-16.53141 13.23841 1.980682 1.132195 —4.788595 7.100574
1 0 0 0 0 0 0 0 0

Table 9

Amplitude of transverse electric displacement —D; x 10'° for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under
sinusoidal mechanical load

4 a/h=4 a/h =10
R=0.0 R=02 R=04 R=0.6 R=0.0 R=02 R=04 R=0.6

0 0.023245 0.117935 0.836255 -0.512227 0.032974 0.129138 0.799788 -0.546710
0.1 0.036857 0.131869 0.852341 —-0.500056 0.042968 0.139190 0.810179 —-0.536967
0.2 0.067979 0.163916 0.890917 -0.473524 0.068901 0.165284 0.837281 -0.511832
0.3 0.105749 0.203159 0.941180 —0.443879 0.105291 0.201917 0.875574 —0.476855
1/3 0.118311 0.216322 0.959034 —0.434888 0.118882 0.215603 0.889957 -0.463884
0.4 0.122215 0.219793 0.958766 —-0.427925 0.122971 0.219624 0.893433 —0.459280
0.5 0.128111 0.225514 0.962458 -0.420097 0.129166 0.225792 0.899307 -0.452760
0.6 0.134003 0.231798 0.970997 —0.415459 0.135358 0.232047 0.905893 —0.446784
2/3 0.137897 0.236268 0.979354 -0.414178 0.139443 0.236223 0.910636 -0.443144
0.7 0.150430 0.248156 0.986507 —-0.398204 0.153013 0.249688 0.923396 —0.428983
0.8 0.188633 0.284924 1.012296 —-0.351760 0.189373 0.285816 0.957874 -0.391177
0.9 0.220545 0.316056 1.037040 —0.314828 0.215306 0.311627 0.982715 —0.364333
1 0.234626 0.329901 1.048819 -0.299050 0.225307 0.321591 0.992361 -0.354016

To give a more direct impression, we depict the through-thickness distributions of electric potential and
electric displacements in Fig. 2 for a four-layered rectangular laminate with the layup of [PZT-4/
PVDF(90°)/PZT-4/PVDF(0°)] from the top to bottom. The plate, with a/h = 4 and b/h = 6, is subjected to
a sinusoidal pressure ¢ = g sin(n¢) sin(ny) at the top surface. Open-circuit electric condition is assumed at
both surfaces and RV = R®® = 2R® = R is used in the calculation.

The results shown in Tables 8, 9 and 12 as well as in Fig. 2 indicate that the effect of interfacial
imperfections should be exactly evaluated for smart structures. For example, when the smart laminate
is controlled by a feed-back technology making use of the difference of electric potential between the top
and bottom surfaces, the reaction may be amplified when the bonding imperfection is present, as shown in
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Table 10
Amplitude of in-plane normal stress 7;; for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under sinusoidal mechanical
load

¢ alh=4 a/h =10
R=0.0 R=02 R=04 R=0.6 R=0.0 R=02 R=04 R=06
0 —17.36568 —17.40433 —17.28472 —17.68833 —72.38055 —-72.46749 —-72.50849 -72.71039
0.1 —8.828046 —8.832835 —8.766047 -8.936150  —51.76590 —51.78613 -51.77512 —51.87367
0.2 —3.286680 —3.259867 —3.228147 -3.213225  —33.90355 —33.85823 —33.79535 —33.79434
0.3 1.157076 1.223984 1.226318 1.441079  -17.84170 —17.72853 -17.61114 —17.50908
1/3 2.659247 2.743600 2.735650 3.031578  -12.73792 —-12.60101 —12.46437 —-12.32738
1/3 0.306493 0.284214 0.202724 0.317746 —-1.209034 —-1.229249 —-1.294360 -1.201775
0.4 0.193890 0.177336 0.103593 0.219545 —-0.696063 —0.711148 —-0.770904 —-0.673779
0.5 0.039054 0.030419 —-0.034307 0.086858 0.068841 0.061356 0.009323 0.113706
0.6 —-0.106372 —0.107442 —-0.165776 —0.034490 0.835557 0.835628 0.791014 0.903264
2/3 —0.202000 -0.197979 —-0.253299 —-0.112235 1.351757 1.356880 1.317081 1.434954
2/3 -3.220512 —-3.332650 -3.536152 —3.434845 12.558065 12.42113 12.28420 12.14788
0.7 —-1.627620 -1.713929 —1.864080 -1.801078 17.67897 17.56728 17.46004 17.33769
0.8 3.089206 3.064020 3.043990 3.007409 33.80166 33.76227 33.74053 33.65699
0.9 8.977917 9.004551 9.102612 8.963635 51.74164 51.77234 51.83423 51.78650
1 18.05565 18.14248 18.38699 18.10766 72.45481 72.55714 72.70523 72.69222
Table 11

Amplitude of in-plane normal stress 7y, for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under sinusoidal mechanical
load

4 a/h=4 a/h =10
R=0.0 R=02 R=04 R=0.6 R=0.0 R=02 R=04 R=0.6

0 —-0.268170 -0.276629 —0.334473 —-0.228630 —1.112428 —-1.121750 —1.178096 -1.069325
0.1 -0.129722  -0.137672  —0.196566  -0.086622  -0.790807  —0.799105  —0.854680  —0.744254
0.2 —-0.027536 —-0.035056 —-0.095175 0.019016 —-0.502504 —-0.509800 —-0.564662 —-0.452511
0.3 0.061412 0.054373  -0.007297 0.112060  -0.235989  —-0.242264  —0.296441 -0.182429
173 0.091334 0.084492 0.022212 0.143633 -0.150177 —-0.156099 —-0.210048 —-0.095375
1/3 0.099809 0.091288 0.039866 0.130664  -0.142244  -0.150370  —0.195292  —0.111008
0.4 0.096902 0.089256 0.039136 0.129802 —-0.045246 -0.052577 —-0.096651 —-0.011706
0.5 0.094564 0.088117 0.039430 0.130727 0.099632 0.093479 0.050611 0.136656
0.6 0.093651 0.088327 0.040519 0.133484 0.244780 0.239794 0.198063 0.285348
2/3 0.093309 0.088727 0.041226 0.135922 0.342259 0.338051 0.297044 0.385239
2/3 0.076577 0.066536 0.001069 0.119317 0.324835 0.314670 0.256482 0.366921
0.7 0.107869 0.098271 0.034055 0.150874 0.410898 0.401126 0.343456 0.453978
0.8 0.201234 0.192735 0.131640 0.244858 0.678327 0.669689 0.613486 0.724298
0.9 0.309182 0.301615 0.243102 0.353424 0.967821 0.960281 0.905465 1.016648
1 0.456170 0.449586 0.393607 0.501305 1.290955 1.284524 1.231067 1.342725

Fig. 2(a). This property can be either beneficial or harmful to the practical structures, depending on the
control strategy and the method.

Finally, we give the results of a rectangular laminated PVDF piezoelectric plate with a uniform
imperfection R = 0.6 in Table 13. All parameters are identical to that as considered in Tables 4-12,
except that the laminate is not in a state of cylindrical bending and the load is ¢ = gy sin(=&) sin(znn). Just
as the dynamic case, Table 13 shows that when b/a of the rectangular laminate increases, the results
converge rapidly to that of the cylindrical bending problem as given in Tables 4-12. It is further shown
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Table 12
Amplitude of in-plane electric displacement —D; x 10'° for a three-ply ([0/90/0°]) PVDF laminate in cylindrical bending under sinu-
soidal mechanical load

4 a/h=4 a/h =10
R=100 R=02 R=04 R=0.6 R=0.0 R=02 R=04 R=0.6

0 0 0 0 0 0 0 0 0

0.1 0.312219 0.320280 0.375318 0.274649 0.602823 0.606406 0.627915 0.586479
0.2 0.457992 0.473386 0.584859  0.377898 1.019242 1.025770 1.068305 0.984408
0.3 0.485993 0.507966 0.677352 0.358199 1.271396 1.280228 1.343316 1.215900
1/3 0.471585 0.495539 0.684610  0.326480 1.321488 1.330940 1.400772 1.258601
1/3 0.074235 0.063528 —-0.026194 0.146200 0.193942 0.189731 0.157113 0.224256
0.4 0.074845 0.069001 0.015855  0.119725 0.196321 0.194031 0.174703 0.215216
0.5 0.075171 0.076559 0.078004 0.079510 0.197608 0.198181 0.198758 0.199338
0.6 0.074729 0.083312 0.139313  0.038419 0.196157 0.199575 0.220039 0.180670
2/3 0.073985 0.087366 0.179878 0.010397 0.193663 0.198970 0.232691 0.166660
2/3 0.468342 0.442009 0.250564  0.606329 1.319278 1.308504 1.237353 1.378206
0.7 0.486902 0.463979 0.293644 0.611847 1.269737 1.260394 1.196796 1.323702
0.8 0.466992 0.453122 0.343164  0.551630 1.018869 1.013334 0.971792 1.056680
0.9 0.321970 0.315722 0.262487 0.364949 0.603063 0.600641 0.580292 0.622886
1 0 0 0 0 0 0 0 0

that, when b/a = 5, although the cylindrical bending assumption can be adopted for the determination
of plate deflection, it becomes completely unsuitable for calculating the stress component o,. This is
identical to that observed for the elastic plate (Chen et al., 2003). It is also not very accurate to predict
the response of electric potential based on the assumption of cylindrical bending for a rectangular
laminate with b/a = 5.

6. Conclusion

State-space formulations are established for analyzing the bending and free vibration problems of
simply-supported laminated orthotropic piezoelectric rectangular plates. The bonding between any two
adjacent layers can be either perfect or imperfect, which can be represented in a unified model of the general
spring layer, in which the relation between the electric potential and electric displacement in Fan and Sze
(2001) is adopted. The analysis is directly based on the three-dimensional equations of an orthotropic
piezoelectric medium, without introducing any assumptions on the elastic and electric fields. Therefore, the
results presented in this paper are believed to be especially valuable for further studies based on various
two-dimensional approximate theories or numerical methods.

In this paper, attention is only paid to the effect of bonding imperfections on the dynamic and static
behavior of laminated piezoelectric plates. A complete research should necessarily take account of the
mechanism of imperfect bonding, the determination of compliance constants in the spring layer model as
well as other aspects of micromechanics. These topics are however, out of the scope of this paper, and the
reader is referred to Aboudi (1987), Hashin (1990) and Fan and Sze (2001), for example, for the study in
this respect.

It should be pointed out that the spring layer model is only correct within the context of delamination
(shear slip) initiation and on the initial growth response of the delamination (shear slip). For more general
cases, non-linear interfacial constitutive relations should be developed and utilized (Williams and Addessio,
1997). However, the solution presented in the paper can be regarded as a starting point for succeeding
analysis.
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Fig. 2. Distributions of normalized electric fields along the thickness direction in a four-layered piezoelectric laminate [PZT-4/
PVDF(90°)/PZT-4/PVDF(0°)]: (a) (a/2,b/2,2)\/ Vel /(hgo); (b) —D.(a/2,b/2,2)7/c\ /e [q0; (©) Du(0,b/2,2)1/ ) /el /go;
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Table 13
Amplitude of physical quantities at { = 0.5 for a three-ply ([0/90/0°]) PVDF rectangular laminate under sinusoidal mechanical load
(R=0.6)

a/h Quantity b/h =4 b/h=10 b/h =20 b/h =50 b/h =100 b/h = 500
4 u x 1010 0.006012 0.006406 0.006592 0.006728 0.006758 0.006768
3 x 101 1.209096 1.823216 1.893543 1.909291 1.911371 1.912027
113 0.958215 1.408143 1.454453 1.464108 1.465346 1.465735
T33 0.494647 0.499263 0.499920 0.500096 0.500121 0.500128
¢ x 10° 12.33100 7.123832 5.882902 5.516201 5.463245 5.446270
—Ds5 x 100 —-0.384767 —-0.412157 —-0.417392 —0.419565 —0.419958 —-0.420091
1 0.083829 0.085224 0.086039 0.086669 0.086807 0.086855
T2 -0.165119 —-0.094472 0.010458 0.102537 0.123178 0.130418
—D; x 10'° 0.081218 0.082693 0.080495 0.079677 0.079552 0.079512
10 u x 101 0.002543 0.003079 0.003217 0.003370 0.003448 0.003486
3 x 1010 1.307317 7.112815 9.163009 9.570977 9.617142 9.631190
Ti3 0.732875 3.339580 4.129365 4.258685 4.271242 4.274914
T33 0.495220 0.499560 0.500191 0.500366 0.500390 0.500398
¢ x 10° 10.28846 11.91559 8.142392 6.461406 6.201763 6.117765
—D; x 1010 —-0.412860 —0.442887 —0.448063 -0.451025 —-0.452183 —-0.452734
711 0.111312 0.110992 0.111286 0.112543 0.113302 0.113688
Ty —0.186685 -0.171192 —-0.122303 0.014415 0.094300 0.134723
—D; x 10 0.064976 0.179518 0.200000 0.199810 0.199470 0.199344
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Appendix A

The operator matrix M is defined as follows:

|: 0 M1:|
M= :
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where

o = C33833 + 6537 Bi = (ci3833 +esress)/a,
By = (cazess + emess)/a,
ki = cii —ci3fy — ey,
ks = cio — ci3fy — ey = cio — e3P — exnfs,
ky =& + 6%5/055, ks = &e» + 654/044-

The five induced variables are determined by
(0%, 0y, ‘cxy,Dx,Dy]T = Nu, v, 0., D., Tyz, Tpz, W, d)]T,

where,

ﬁz = (013633 - 033631)/05,
ﬁ4 = (023633 - 033632)/06,
ky = ¢ — ¢35 — exnfy,

N, 0
N = ,
0 N,
o o
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_ 90 o _ | ess
Ni=| ks hk e By PBsl, Ny= 0 e
el 0 c.
Ce6 a Ce6 % O 0 w“
The dimensionless constant matrix M is given by
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where t, = mnh/a, t, = nnh/b, k = —2*p/p", and Q = wh\/p<1>/c(lll> is the dimensionles
The state equation for cylindrical bending problem can be derived as
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