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Abstract

The bending and free vibration of an imperfectly bonded orthotropic piezoelectric rectangular laminates are

investigated using a three-dimensional state-space approach. The plate is assumed to have simple supports only, which

enables us to obtain a solution in a completely exact form. A general spring layer is adopted to model the bonding

imperfections. The laminated plate that is in a state of cylindrical bending is also considered as a particular case.

Numerical results are presented and some particular issues are discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials and structures have been extensively used in engineering industries and high-tech

areas due to their intelligent ability of sensing, actuating and controlling. A large amount of publications on

piezoelectric plates and shells can be found (e.g., Tzou, 1993; Rogacheva, 1994; Tani et al., 1998; Wang and
Yang, 2000; Ding and Chen, 2001; Fernandes and Pouget, 2002; Altay and D€okmeci, 2003 etc., and the

references cited therein). However, little work has been done on laminated piezoelectric plates and shells

with imperfect interfaces. On the other hand, laminated elastic structures featuring interlaminar bonding

imperfections have been of intense research interest recently (Liu et al., 1994; Cheng et al., 1996a,b, 2000a;

Librescu and Schmidt, 2001; Chen and Lee, 2004; Chen et al., 2003, 2004a,b).
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Multifarious flaws like microcracks, inhomogeneities and voids may be introduced into the bonding

layer of a laminated smart structure in the process of manufacture. The bonding strength may also become

weakened during the service time of a practical structure. Thus, it is imperative that the effect of imperfect

interfaces on the structural behavior should be accurately evaluated. In particular, with the increasing
application of piezoelectric actuators and sensors in damage detection of engineering structures, interla-

minar debonding in adaptive structures becomes a familiar failure phenomenon and has gained much

research interest. Seeley and Chattopadhyay (1999) considered the effect of actuator debonding of adaptive

composites using the finite element method. Icardi et al. (2000) presented a dynamic investigation of

adaptive cantilever beam with interlayer slips. Zou et al. (2000) made an excellent review on topics related

to damage identification and health monitoring for composite structures.

Recently, a three-dimensional exact analysis based on state-space formulations was proposed for a cross-

ply rectangular laminate with bonding imperfections described by a spring layer model (Chen et al., 2003).
Comparison with the extended zigzag plate theory (Cheng et al., 1996b) showed that although the plate

theory is very accurate for perfect laminates, it may become inaccurate when the bonding imperfections are

present. Investigation on laminated cylindrical panels also revealed that the high-order shell theory suffers

from inaccuracy due to the presence of imperfect interfaces (Chen et al., 2004a). Thus, exact solutions of

smart structures featuring interlaminar bonding imperfections become necessary. Moreover, these solutions

can also be used as benchmarks for clarifying any two-dimensional plate theories or numerical methods.

Wang and Zhong (2003) recently obtained an exact static solution of an infinite imperfect laminated

cylindrical shell with surface piezoelectric layers by using a transfer matrix method (Yue and Yin, 1998).
This study extends our previous analysis (Chen et al., 2003) to further take account of the coupling effect

between elastic deformation and electric field in a laminated piezoelectric rectangular plate. The analysis is

again based on the state-space formulations. It is emphasized here that the state-space approach is very

effective in studying laminated structures since the final solving equations always keep the same small scale

as that for a single-layered plate (Bahar, 1975). Several works on perfect piezoelectric structures using this

approach can be found in literature (Sosa, 1992; Lee and Jiang, 1996; Chen et al., 1997, 1998, 2001; Ding

et al., 1999). It will be shown that, compared to the analysis for the perfect laminates, only the so-called

interfacial transfer matrices should be integrated into the global transfer matrix.
To describe the imperfection of interlaminar bonding, the general spring layer model is adopted (Ab-

oudi, 1987; Hashin, 1990). It has been widely employed to study the effect of interfacial imperfections on the

static and dynamic behavior of laminated structures (Liu et al., 1994; Cheng et al., 1996a,b, 2000a; Icardi

et al., 2000). In this paper, in addition to the linear Hooke’s relations between mechanical displacements

and stress components at the interfaces, a similar relation between the electric potential and electric dis-

placement is further utilized (Fan and Sze, 2001).

In this paper, the problem of a piezoelectric laminate in cylindrical bending is also considered as a

particular case.
Fig. 1. Geometry of a laminated rectangular plate and the Cartesian coordinates.
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2. Basic equations and the state-space approach

Consider an N -layered orthotropic piezoelectric rectangular plate as shown in Fig. 1. The constitutive

relations are (Ding and Chen, 2001)
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where u, v, and w are the displacement components in x, y, and z-directions, respectively; riðsijÞ, Di, and /
are the normal (shear) stresses, electric displacements, and electric potential, respectively; and cij, eij, and eij
are the elastic, piezoelectric, and dielectric constants, respectively. The equations of motion in absence of
body forces are
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where q is the mass density. The equation of electric equilibrium is
oDx

ox
þ oDy

oy
þ oDz

oz
¼ 0: ð3Þ
As shown in Lee and Jiang (1996), Chen et al. (1997, 1998), and Ding and Chen (2001), the following
state equation can be directly derived from Eqs. (1) to (3):
o

oz
½u; v; rz;Dz; sxz; syz;w;/�T ¼ M½u; v; rz;Dz; sxz; syz;w;/�T; ð4Þ
where the matrix M is given in Appendix A. Here u, v, w, rz, sxz, syz, /, and Dz are termed as state variables,
from which the five induced variables rx, ry , sxy , Dx, and Dy can be determined from Eq. (A.3).

For the following simply supported boundary conditions (Lee and Jiang, 1996; Ding and Chen, 2001),
rx ¼ v ¼ w ¼ / ¼ 0 at x ¼ 0; a;

ry ¼ u ¼ w ¼ / ¼ 0 at y ¼ 0; b;
ð5Þ
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we can assume
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where n ¼ x=a, g ¼ y=b, and f ¼ z=h are dimensionless coordinates; m and n are integers; cð1Þ11 and eð1Þ33 etc.

represent the material constants of the first layer (the bottom layer), and x is the circular frequency. It can

be shown that the simply supported conditions in Eq. (5) have been satisfied automatically. Substituting Eq.

(6) into Eq. (4) yields
d

df
VðfÞ ¼ MVðfÞ; ð7Þ
where VðfÞ ¼ ½�uðfÞ;�vðfÞ; �rzðfÞ;DzðfÞ;�sxzðfÞ;�syzðfÞ; �wðfÞ; �/ðfÞ�T, and the constant coefficient matrix M is also

presented in Appendix A. The solution to Eq. (7) can be obtained as
VðfÞ ¼ exp½Mðf� fk�1Þ�Vðfk�1Þ ðfk�1 6 f6 fk; k ¼ 1; 2; . . . ;NÞ; ð8Þ

where f0 ¼ 0, fk ¼ zk=h ¼

Pk
j¼1 hj=h, and hk is the thickness of the kth layer.

Setting f ¼ fk in Eq. (8), gives
V
ðkÞ
1 ¼ QkV

ðkÞ
0 ; ð9Þ
where V
ðkÞ
1 and V

ðkÞ
0 are the state vectors at the upper and lower surfaces, respectively, of the kth layer, and

Qk ¼ exp½Mðfk � fk�1Þ� is the transfer matrix of that layer, which can be easily calculated using the built-in

functions in MATHEMATIC or MATLAB. Similarly, we get
V
ðkþ1Þ
1 ¼ Qkþ1V

ðkþ1Þ
0 : ð10Þ
3. Imperfect bonding conditions

A general spring-layer model is adopted here to describe the imperfect bonding (Cheng et al., 1996a,b;

Fan and Sze, 2001):
rðkþ1Þ
z ¼ rðkÞ

z ¼ KðkÞ
z ½wðkþ1Þ � wðkÞ�;

sðkþ1Þ
xz ¼ sðkÞxz ¼ KðkÞ

x ½uðkþ1Þ � uðkÞ�;
sðkþ1Þ
yz ¼ sðkÞyz ¼ KðkÞ

y ½vðkþ1Þ � vðkÞ�;
Dðkþ1Þ

z ¼ DðkÞ
z ¼ KðkÞ

e ½/ðkþ1Þ � /ðkÞ� at z ¼ zk;

ð11Þ
where KðkÞ
i (i ¼ x; y; z) are the bonding stiffness constants of the interface between the kth layer and (k þ 1)th

layer, and KðkÞ
e is the electric spring constant. Detailed discussion on the mechanical relations of the above

spring layer model can be found in Cheng et al. (1996a) and Librescu and Schmidt (2001), which is similarly

applied to the electric relation.
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In view of Eq. (6), Eq. (11) can be expressed as follows:
V
ðkþ1Þ
0 ¼ PkV

ðkÞ
1 ; ð12Þ
where Pk, the interfacial transfer matrix (Chen et al., 2003), is defined as
Pk ¼

1 0 0 0 RðkÞ
x 0 0 0

0 1 0 0 0 RðkÞ
y 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 �RðkÞ
z 0 0 0 1 0

0 0 0 �RðkÞ
e 0 0 0 1

2
66666666664

3
77777777775
; ð13Þ
where RðkÞ
i ¼ cð1Þ11 =½K

ðkÞ
i h� ði ¼ x; y; zÞ, and RðkÞ

e ¼ eð1Þ33 =½KðkÞ
e h� are dimensionless compliance coefficients of the

interfaces.

From Eqs. (9), (10) and (12), a relation between the state vector at the upper surface of the (k þ 1)th

layer and that at the lower surface of the kth layer is established as
V
ðkþ1Þ
1 ¼ Qkþ1PkQkV

ðkÞ
0 : ð14Þ
Continuing the above procedure, leads to the relation between the state vectors at the top and bottom

surfaces of the laminate
V
ðNÞ
1 ¼ TV

ð1Þ
0 ; ð15Þ
where T ¼ ð
Q2

j¼N QjPj�1ÞQ1 is the global transfer matrix for a laminated orthotropic piezoelectric plate
featuring interfacial bonding imperfections. In case of a perfectly bonded plate, all Pj become unit, and we

have T ¼
Q1

j¼N Qj (Ding and Chen, 2001).
4. Bending and free vibration analysis

Consider the bending problem (x ¼ 0) of a plate subjected to generally distributed normal pressures

pðx; yÞ and qðx; yÞ on the bottom and top surfaces, respectively. These loads can be expanded in terms of
double sine functions as follows:
pðx; yÞ ¼ cð1Þ11

X1
m¼1

X1
n¼1

amn sinðmpnÞ sinðnpgÞ;

qðx; yÞ ¼ cð1Þ11

X1
m¼1

X1
n¼1

bmn sinðmpnÞ sinðnpgÞ;
ð16Þ
where ½amn; bmn� ¼ ½4=cð1Þ11 �
R 1

0

R 1

0
½pðn; gÞ; qðn; gÞ� sinðmpnÞ sinðnpgÞdndg. For an arbitrary couple of (m; n), the

surface mechanical boundary conditions are
�rzð0Þ ¼ amn; �rzð1Þ ¼ bmn; �sxzð1Þ ¼ �syzð1Þ ¼ �sxzð0Þ ¼ �syzð0Þ ¼ 0: ð17Þ
On the other hand, there are two types of electric conditions frequently encountered in practice, i.e. the

open-circuit and closed-circuit conditions:
Open: Dzð0Þ ¼ Dzð1Þ ¼ 0; Closed: �/ð0Þ ¼ �/ð1Þ ¼ 0: ð18Þ
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Thus we can obtain from Eq. (15)
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for the closed-circuit condition. In Eqs. (19) and (20) Tij represents the elements of matrix T. The state

vector for any value of f can then be determined by
VðfÞ ¼ exp½Mðf� fk�1Þ�
Y1
j¼k�1

QjPj�1

 !
V

ð1Þ
0 ðfk�1 6 f6 fk; k ¼ 1; 2; . . . ;NÞ; ð21Þ
where P0 is an 8th-order identity matrix.

Now consider the free vibration problem. If the plate is traction-free at the top and bottom surfaces, the

following frequency equations can be derived:
T31 T32 T37 T38
T41 T42 T47 T48
T51 T52 T57 T58
T61 T62 T67 T68

��������

��������
¼ 0 ð22Þ
for the open-circuit condition, and
T31 T32 T34 T37
T51 T52 T54 T57
T61 T62 T64 T67
T81 T82 T84 T87

��������

��������
¼ 0 ð23Þ
for the closed-circuit condition.

It is known that when b ! 1, the plate will be in a state of cylindrical bending, for which only two

displacements u and w, in x and z directions, respectively are non-zero, and both are independent of the

coordinate y. The corresponding state equation is given in Eq. (A.6) in Appendix A, and the analysis is very

similar to those presented above, which is omitted here for brevity.
5. Numerical examples

In all examples to be considered, we assume RðkÞ
z ¼ 0 to avoid the material penetration phenomenon

(Cheng et al., 1996a,b). Note that the delamination problem of a laminated plate subjected to static normal
tension loads, i.e. upward at the top surface and downward at the bottom surface, can be considered by
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taking RðkÞ
z 6¼ 0 (Shu and Soldatos, 2001). We also take RðkÞ

x ¼ RðkÞ
y ¼ RðkÞ

e ¼ RðkÞ for simplicity. In addition,

each layer in the laminate is considered to have the same thickness.

First, consider the free vibration of a simply supported four layered PZT-4/PVDF/PVDF/PZT-4 square

plate, with the PVDF layer oriented at 0� with respect to the x-axis. Only in this example, the material
constants in Heyliger and Saravanos (1995), which are listed in Table 1 for readers’ convenience, are

employed for comparison purpose.

The six lowest non-dimensional frequencies X ¼ xh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1Þ=cð1Þ11

q
are given in Table 2 with

Rð1Þ ¼ 0:5Rð2Þ ¼ Rð3Þ ¼ R being employed. The results for the perfect laminate, when transformed to the

frequency parameter x=100, are found identical to those obtained by Heyliger and Saravanos (1995). It is

shown that with the increase of R, the frequency of the laminate decreases, due to the reduction of plate’s

rigidity that is induced by the interfacial imperfections.

We notice here that, like the elastic plate (Chen et al., 2003), the sensitivity of frequency to the interfacial
imperfection depends greatly on the frequency order. For example, the relative error defined by

ðxjR¼0:6 � xjR¼0Þ=xjR¼0, for the first lowest natural frequency is only about )0.1% when a=h ¼ 50, while it

becomes )6% or so for the fifth frequency, for both types of electric conditions. This property is very

important in practice because one can consciously select for consideration the vibrational modes whose

frequencies vary significantly with the interfacial flaws. This can improve the reliability and precision of

evaluation of engineering structures.

The lowest frequency parameters X� ¼ 100xh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1Þ=cð1Þ11

q
of rectangular PVDF laminates with a=h ¼ 10

are given in Table 3 for several different layup schemes. In this example, we assume a uniform imperfection,
i.e. Rð1Þ ¼ Rð2Þ ¼ � � �RðNÞ ¼ R. Hereafter, the material constants of PVDF and PZT-4 in Cheng et al. (2000b)

are adopted, which are also listed in Table 1. The formulations for the laminate in cylindrical bending are

directly employed to calculate the results for b=h ! 1. Just as the elastic case, the frequencies of the

rectangular laminate converge rapidly to that of the laminate in cylindrical bending when b=a increases. In

fact, the lowest natural frequency of the rectangular laminate of b=a ¼ 5 has a relative error smaller than
Table 1

Material constants of PZT-4 and PVDFa

Property Heyliger and Saravanos (1995) Property Cheng et al. (2000b)

PZT-4 PVDF PZT-4 PVDF

E1 (GPa) 81.3 237.0 c11 (GPa) 139 238.24

E2 (GPa) 81.3 23.2 c22 (GPa) 139 23.6

E3 (GPa) 64.5 10.5 c33 (GPa) 115 10.64

m12 0.329 0.154 c12 (GPa) 77.8 3.98

m13 0.432 0.178 c13 (GPa) 74.3 2.19

m23 0.432 0.177 c23 (GPa) 74.3 1.92

G23 (GPa) 25.6 2.15 c44 (GPa) 25.6 2.15

G13 (GPa) 25.6 4.4 c55 (GPa) 25.6 4.4

G12 (GPa) 30.6 6.43 c66 (GPa) 30.6 6.43

e31 (C/m2) )5.20 )0.13 e31 (C/m2) )5.2 )0.13
e32 (C/m2) )5.20 )0.14 e32 (C/m2) )5.2 )0.145
e33 (C/m2) 15.08 )0.28 e33 (C/m2) 15.1 )0.276
e24 (C/m2) 12.72 )0.01 e24 (C/m2) 12.7 )0.009
e15 (C/m2) –b –b e15 (C/m2) 12.7 )0.135
e11=e0c 1475 12.5 e11=e0c 1475 12.5

e22=e0 1475 11.98 e22=e0 1475 11.98

e33=e0 1300 11.98 e33=e0 1300 11.98

a The densities of PZT-4 and PVDF are assumed to be identical, as done in Heyliger and Saravanos (1995).
b The value of e15 was not given in Heyliger and Saravanos (1995), but use was made of e15 ¼ e24 in their calculation (Heyliger, 2003).
c e0 ¼ 8:85� 10�12 (F/m) in Heyliger and Saravanos (1995), and e0 ¼ 8:854185� 10�12 (F/m) in Cheng et al. (2000b).



Table 2

First six non-dimensional frequencies X ¼ xh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1Þ=cð1Þ11

q� �
of a four-ply square laminate (m ¼ n ¼ 1)

Electric

condition

a=h R 1 2 3 4 5 6

Open 4 0.0 0.156506 0.516113 0.728854 0.883968 0.976442 1.09364

0.2 0.154778 0.514975 0.724029 0.882140 0.975443 1.08652

0.4 0.153133 0.513859 0.719393 0.880264 0.974430 1.07985

0.6 0.151565 0.512766 0.714937 0.878342 0.973401 1.07359

50 0.0 0.00194510 0.0440889 0.0765848 0.428759 0.607858 0.975741

0.2 0.00194445 0.0440880 0.0765842 0.424169 0.594852 0.975513

0.4 0.00194381 0.0440871 0.0765837 0.419713 0.582596 0.973402

0.6 0.00194316 0.0440862 0.0765832 0.415386 0.571027 0.966228

Closed 4 0.0 0.156223 0.516037 0.728853 0.883944 0.973696 1.09068

0.2 0.154501 0.514901 0.724026 0.882115 0.972665 1.08367

0.4 0.152862 0.513788 0.719390 0.880239 0.971618 1.07712

0.6 0.151299 0.512697 0.714933 0.878316 0.970554 1.07096

50 0.0 0.00194504 0.0440657 0.0765329 0.428400 0.606717 0.947783

0.2 0.00194439 0.0440644 0.0765315 0.423822 0.593781 0.947241

0.4 0.00194375 0.0440631 0.0765301 0.419377 0.581588 0.946643

0.6 0.00194310 0.0440617 0.0765287 0.415061 0.570077 0.945944

Table 3

Lowest frequency parameters X� ¼ 100xh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1Þ=cð1Þ11

q� �
of simply-supported rectangular PVDF laminates with uniform interfacial

imperfection (a=h ¼ 10, m ¼ n ¼ 1)a

Stacking sequenceb b=h R ¼ 0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

[0/90�] 10 6.60800 6.59228 6.57683 6.56164

50 4.34998 4.34214 4.33441 4.32678

100 4.31881 4.31107 4.30344 4.29591

200 4.31171 4.30399 4.29638 4.28887

300 4.31042 4.30271 4.29510 4.28760

1 4.30940 4.30170 4.29409 4.28659

[0/90/0�] 10 2.42954 2.42627 2.42301 2.41977

50 2.10358 2.10027 2.09697 2.09369

100 2.09888 2.09556 2.09227 2.08899

200 2.09776 2.09445 2.09116 2.08788

300 2.09756 2.09425 2.09096 2.08768

1 2.09740 2.09409 2.09079 2.08752

[0/90/0/90�] 10 7.67854 7.55903 7.44595 7.33878

50 5.21066 5.13375 5.06083 4.99155

100 5.18333 5.10653 5.03370 4.96452

200 5.17742 5.10066 5.02786 4.95870

300 5.17637 5.09962 5.02682 4.95767

1 5.17554 5.09879 5.02600 4.95685

[(0/90)20�] 10 2.51310 2.50768 2.50229 2.49695

50 2.01755 2.01283 2.00815 2.00350

100 2.01185 2.00713 2.00246 1.99781

200 2.01056 2.00585 2.00118 1.99654

300 2.01033 2.00562 2.00095 1.99631

1 2.01015 2.00544 2.00076 1.99612

aOpen electric condition at both surfaces.
b The stacking sequence is from the top to bottom.
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1% when compared to that of the laminate in cylindrical bending, either for the perfect case or for the

imperfect cases.

Now we turn to consider the bending problem of a three-ply ([0/90/0�]) PVDF laminate in cylindrical

bending with a uniform interfacial imperfection (Rð1Þ ¼ Rð2Þ ¼ R) subjected to a sinusoidal pressure
q ¼ q0 sinðpnÞ applied at the top surface. The closed-circuit electric condition is adopted at both surfaces.

Since the present analysis is completely exact, we present the numerical results in Tables 4–12, which can

serve as benchmarks for future study using different methods. For the purpose of comparison, the nine field

variables are all non-dimensionalized according to Cheng et al. (2000b):
Table 4

Amplitude of in-plane mechanical displacement �u1 � 1010 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under

sinusoidal mechanical load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 0.232394 0.232830 0.230608 0.237176 0.968681 0.969761 0.969730 0.973597

0.1 0.118249 0.118231 0.116713 0.120162 0.692871 0.693058 0.692330 0.694815

0.2 0.044356 0.043914 0.042858 0.043848 0.454035 0.453346 0.451923 0.453077

0.3 )0.014791 )0.015771 )0.016446 )0.018107 0.239388 0.237790 0.235636 0.235441

1/3 )0.034788 )0.036001 )0.036544 )0.039283 0.171200 0.169284 0.166871 0.166211

1/3 )0.034788 )0.032871 )0.030336 )0.029891 0.171200 0.172850 0.173996 0.176906

0.4 )0.017320 )0.016186 )0.014679 )0.014430 0.103637 0.104587 0.105006 0.107285

0.5 0.006936 0.006985 0.007274 0.006768 0.002928 0.002840 0.002207 0.003488

0.6 0.029902 0.028909 0.028299 0.026442 )0.098030 )0.099151 )0.100802 )0.100589
2/3 0.045041 0.043344 0.042283 0.039150 )0.166036 )0.167849 )0.170162 )0.170708
2/3 0.045041 0.046455 0.048526 0.048390 )0.166036 )0.164288 )0.163040 )0.160043
0.7 0.023830 0.024899 0.026261 0.026628 )0.234454 )0.233043 )0.232192 )0.229384
0.8 )0.038968 )0.038716 )0.039082 )0.037406 )0.449916 )0.449472 )0.449763 )0.447478
0.9 )0.117503 )0.117942 )0.119880 )0.116849 )0.689790 )0.690285 )0.691694 )0.689890
1 )0.238873 )0.240117 )0.244011 )0.239107 )0.966919 )0.968372 )0.970934 )0.969595

Table 5

Amplitude of transverse mechanical displacement �u3 � 1010 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under

sinusoidal mechanical load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 1.854100 1.860678 1.849267 1.897279 9.517795 9.546966 9.569539 9.615148

0.1 1.857581 1.864706 1.857378 1.897753 9.523759 9.553156 9.577262 9.619808

0.2 1.861251 1.868921 1.865701 1.898382 9.528497 9.558113 9.583750 9.623223

0.3 1.866469 1.874685 1.875609 1.900505 9.532625 9.562455 9.589620 9.626005

1/3 1.868622 1.877018 1.879337 1.901606 9.533936 9.563836 9.591510 9.626862

0.4 1.873836 1.882620 1.887750 1.904800 9.536587 9.566640 9.595347 9.628646

0.5 1.884152 1.893497 1.902798 1.912054 9.541026 9.571304 9.601551 9.631768

0.6 1.897425 1.907310 1.920760 1.922202 9.546023 9.576517 9.608298 9.635426

2/3 1.907912 1.918147 1.934371 1.930554 9.549659 9.580295 9.613095 9.638158

0.7 1.913602 1.924026 1.941652 1.935216 9.551493 9.582205 9.615521 9.639559

0.8 1.931883 1.942857 1.964634 1.950419 9.556793 9.587732 9.622590 9.643552

0.9 1.951690 1.963203 1.989079 1.967164 9.561476 9.592635 9.629024 9.646913

1 1.971639 1.983682 2.013625 1.984056 9.564924 9.596297 9.634209 9.649024



Table 6

Amplitude of transverse shear stress �s13 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under sinusoidal mechanical

load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 0 0 0 0 0 0 0 0

0.1 1.001178 1.002834 0.995679 1.017665 1.941529 1.943205 1.943672 1.948374

0.2 1.464300 1.465111 1.454160 1.482135 3.281319 3.282602 3.281912 3.288143

0.3 1.545873 1.543098 1.530813 1.550071 4.090574 4.089378 4.085866 4.090490

1/3 1.496079 1.491330 1.479117 1.491713 4.250610 4.248106 4.243265 4.246638

0.4 1.483020 1.479285 1.471130 1.477687 4.270553 4.268418 4.264885 4.266271

0.5 1.473960 1.471211 1.468474 1.465751 4.280400 4.278619 4.276840 4.275063

0.6 1.476639 1.474270 1.476351 1.463748 4.266209 4.264545 4.264283 4.259105

2/3 1.484710 1.482265 1.487317 1.467595 4.243313 4.241595 4.242217 4.234630

0.7 1.548002 1.548146 1.557812 1.535948 4.085072 4.084654 4.086555 4.080321

0.8 1.492833 1.497233 1.513371 1.490558 3.280013 3.281958 3.285874 3.282864

0.9 1.032403 1.036744 1.049868 1.033823 1.942254 1.944334 1.947620 1.946666

1 0 0 0 0 0 0 0 0

Table 7

Amplitude of transverse normal stress �s33 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under sinusoidal mechanical

load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 0 0 0 0 0 0 0 0

0.1 0.043681 0.043763 0.043455 0.044438 0.032191 0.032223 0.032235 0.032317

0.2 0.143333 0.143528 0.142491 0.145530 0.115700 0.115783 0.115796 0.116058

0.3 0.263813 0.263952 0.261988 0.266984 0.232817 0.232907 0.232858 0.233299

1/3 0.303718 0.303760 0.301474 0.306892 0.276538 0.276609 0.276517 0.277000

0.4 0.381685 0.381506 0.378689 0.384608 0.365790 0.365813 0.365633 0.366166

0.5 0.497726 0.497296 0.494056 0.500129 0.500171 0.500133 0.499870 0.500398

0.6 0.613521 0.612894 0.609631 0.615107 0.634484 0.634393 0.634098 0.634517

2/3 0.691027 0.690275 0.687200 0.691832 0.723614 0.723488 0.723197 0.723483

0.7 0.730816 0.730035 0.727156 0.731241 0.767268 0.767131 0.766854 0.767067

0.8 0.852641 0.852070 0.850270 0.852550 0.884284 0.884176 0.883997 0.884069

0.9 0.954817 0.954616 0.954025 0.954727 0.967789 0.967750 0.967692 0.967704

1 1 1 1 1 1 1 1 1
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�u1 ¼
u
Pa

; �u3 ¼
w
Pa

; �s11 ¼
rx

Pc�
; �s22 ¼

ry

Pc�
; �s33 ¼

rz

Pc�
;

�s13 ¼
sxz
Pc�

; �u ¼ /e�

Pac�
; D1 ¼

Dx

Pe�
; D3 ¼

Dz

Pe�
;

ð24Þ
where P ¼ �q0=c� with c� ¼ 1 N=m2 and e� ¼ 1 C=m2.

It is seen that our results for the perfect laminate agree well with those in Cheng et al. (2000b). The effect

of interfacial imperfections on the elastic field is similar to that reported for the elastic plate (Chen et al.,

2003), although it is less significant because of the relatively small values of R assumed in this paper. Hence,

the reader is referred to the paper of Chen et al. (2003) for related discussions. As regards the electric field,
however, the effect is very significant, as shown in Tables 8, 9 and 12.



Table 8

Amplitude of electric potential �u� 103 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under sinusoidal mechanical

load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 0 0 0 0 0 0 0 0

0.1 1.397073 3.490903 19.35737 )10.42074 1.975772 2.826462 8.749449 )3.137531
0.2 2.416957 6.615673 38.45022 )21.30444 3.458134 5.158595 17.00909 )6.779445
0.3 3.241167 9.568718 57.57177 )32.54382 4.528110 7.078254 24.86667 )10.84987
1/3 3.482146 10.52673 63.98121 )36.37336 4.802466 7.635944 27.40699 )12.29351
1/3 3.482146 0.329903 )26.43133 25.12498 4.802466 3.570761 )6.153121 13.94596

0.4 3.829353 2.123209 )13.71729 17.35940 5.265849 4.605596 )1.148123 10.98749

0.5 4.040864 4.491771 4.959642 5.445563 5.528004 5.722303 5.917716 6.114255

0.6 3.874457 6.479092 23.25214 )6.855779 5.270939 6.317346 12.45945 0.714481

2/3 3.550169 7.594892 35.28289 )15.31020 4.810431 6.423937 16.53186 )3.180923
2/3 3.550169 )3.542129 )57.04529 43.25955 4.810431 1.969969 )17.80807 21.88543

0.7 3.312052 )3.055150 )51.09874 38.97535 4.536211 1.981663 )15.81117 19.90095

0.8 2.485030 )1.734398 )33.59028 26.14239 3.465582 1.765867 )10.08390 13.70537

0.9 1.444454 )0.656999 )16.53141 13.23841 1.980682 1.132195 )4.788595 7.100574

1 0 0 0 0 0 0 0 0

Table 9

Amplitude of transverse electric displacement �D3 � 1010 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under

sinusoidal mechanical load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 0.023245 0.117935 0.836255 )0.512227 0.032974 0.129138 0.799788 )0.546710
0.1 0.036857 0.131869 0.852341 )0.500056 0.042968 0.139190 0.810179 )0.536967
0.2 0.067979 0.163916 0.890917 )0.473524 0.068901 0.165284 0.837281 )0.511832
0.3 0.105749 0.203159 0.941180 )0.443879 0.105291 0.201917 0.875574 )0.476855
1/3 0.118311 0.216322 0.959034 )0.434888 0.118882 0.215603 0.889957 )0.463884
0.4 0.122215 0.219793 0.958766 )0.427925 0.122971 0.219624 0.893433 )0.459280
0.5 0.128111 0.225514 0.962458 )0.420097 0.129166 0.225792 0.899307 )0.452760
0.6 0.134003 0.231798 0.970997 )0.415459 0.135358 0.232047 0.905893 )0.446784
2/3 0.137897 0.236268 0.979354 )0.414178 0.139443 0.236223 0.910636 )0.443144
0.7 0.150430 0.248156 0.986507 )0.398204 0.153013 0.249688 0.923396 )0.428983
0.8 0.188633 0.284924 1.012296 )0.351760 0.189373 0.285816 0.957874 )0.391177
0.9 0.220545 0.316056 1.037040 )0.314828 0.215306 0.311627 0.982715 )0.364333
1 0.234626 0.329901 1.048819 )0.299050 0.225307 0.321591 0.992361 )0.354016
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To give a more direct impression, we depict the through-thickness distributions of electric potential and
electric displacements in Fig. 2 for a four-layered rectangular laminate with the layup of [PZT-4/

PVDF(90�)/PZT-4/PVDF(0�)] from the top to bottom. The plate, with a=h ¼ 4 and b=h ¼ 6, is subjected to

a sinusoidal pressure q ¼ q0 sinðpnÞ sinðpgÞ at the top surface. Open-circuit electric condition is assumed at

both surfaces and Rð1Þ ¼ Rð2Þ ¼ 2Rð3Þ ¼ R is used in the calculation.

The results shown in Tables 8, 9 and 12 as well as in Fig. 2 indicate that the effect of interfacial

imperfections should be exactly evaluated for smart structures. For example, when the smart laminate

is controlled by a feed-back technology making use of the difference of electric potential between the top

and bottom surfaces, the reaction may be amplified when the bonding imperfection is present, as shown in



Table 10

Amplitude of in-plane normal stress �s11 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under sinusoidal mechanical

load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 )17.36568 )17.40433 )17.28472 )17.68833 )72.38055 )72.46749 )72.50849 )72.71039
0.1 )8.828046 )8.832835 )8.766047 )8.936150 )51.76590 )51.78613 )51.77512 )51.87367
0.2 )3.286680 )3.259867 )3.228147 )3.213225 )33.90355 )33.85823 )33.79535 )33.79434
0.3 1.157076 1.223984 1.226318 1.441079 )17.84170 )17.72853 )17.61114 )17.50908
1/3 2.659247 2.743600 2.735650 3.031578 )12.73792 )12.60101 )12.46437 )12.32738
1/3 0.306493 0.284214 0.202724 0.317746 )1.209034 )1.229249 )1.294360 )1.201775
0.4 0.193890 0.177336 0.103593 0.219545 )0.696063 )0.711148 )0.770904 )0.673779
0.5 0.039054 0.030419 )0.034307 0.086858 0.068841 0.061356 0.009323 0.113706

0.6 )0.106372 )0.107442 )0.165776 )0.034490 0.835557 0.835628 0.791014 0.903264

2/3 )0.202000 )0.197979 )0.253299 )0.112235 1.351757 1.356880 1.317081 1.434954

2/3 )3.220512 )3.332650 )3.536152 )3.434845 12.558065 12.42113 12.28420 12.14788

0.7 )1.627620 )1.713929 )1.864080 )1.801078 17.67897 17.56728 17.46004 17.33769

0.8 3.089206 3.064020 3.043990 3.007409 33.80166 33.76227 33.74053 33.65699

0.9 8.977917 9.004551 9.102612 8.963635 51.74164 51.77234 51.83423 51.78650

1 18.05565 18.14248 18.38699 18.10766 72.45481 72.55714 72.70523 72.69222

Table 11

Amplitude of in-plane normal stress �s22 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under sinusoidal mechanical

load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 )0.268170 )0.276629 )0.334473 )0.228630 )1.112428 )1.121750 )1.178096 )1.069325
0.1 )0.129722 )0.137672 )0.196566 )0.086622 )0.790807 )0.799105 )0.854680 )0.744254
0.2 )0.027536 )0.035056 )0.095175 0.019016 )0.502504 )0.509800 )0.564662 )0.452511
0.3 0.061412 0.054373 )0.007297 0.112060 )0.235989 )0.242264 )0.296441 )0.182429
1/3 0.091334 0.084492 0.022212 0.143633 )0.150177 )0.156099 )0.210048 )0.095375
1/3 0.099809 0.091288 0.039866 0.130664 )0.142244 )0.150370 )0.195292 )0.111008
0.4 0.096902 0.089256 0.039136 0.129802 )0.045246 )0.052577 )0.096651 )0.011706
0.5 0.094564 0.088117 0.039430 0.130727 0.099632 0.093479 0.050611 0.136656

0.6 0.093651 0.088327 0.040519 0.133484 0.244780 0.239794 0.198063 0.285348

2/3 0.093309 0.088727 0.041226 0.135922 0.342259 0.338051 0.297044 0.385239

2/3 0.076577 0.066536 0.001069 0.119317 0.324835 0.314670 0.256482 0.366921

0.7 0.107869 0.098271 0.034055 0.150874 0.410898 0.401126 0.343456 0.453978

0.8 0.201234 0.192735 0.131640 0.244858 0.678327 0.669689 0.613486 0.724298

0.9 0.309182 0.301615 0.243102 0.353424 0.967821 0.960281 0.905465 1.016648

1 0.456170 0.449586 0.393607 0.501305 1.290955 1.284524 1.231067 1.342725
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Fig. 2(a). This property can be either beneficial or harmful to the practical structures, depending on the

control strategy and the method.

Finally, we give the results of a rectangular laminated PVDF piezoelectric plate with a uniform

imperfection R ¼ 0:6 in Table 13. All parameters are identical to that as considered in Tables 4–12,

except that the laminate is not in a state of cylindrical bending and the load is q ¼ q0 sinðpnÞ sinðpgÞ. Just
as the dynamic case, Table 13 shows that when b=a of the rectangular laminate increases, the results

converge rapidly to that of the cylindrical bending problem as given in Tables 4–12. It is further shown



Table 12

Amplitude of in-plane electric displacement �D1 � 1010 for a three-ply ([0/90/0�]) PVDF laminate in cylindrical bending under sinu-

soidal mechanical load

f a=h ¼ 4 a=h ¼ 10

R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6 R ¼ 0:0 R ¼ 0:2 R ¼ 0:4 R ¼ 0:6

0 0 0 0 0 0 0 0 0

0.1 0.312219 0.320280 0.375318 0.274649 0.602823 0.606406 0.627915 0.586479

0.2 0.457992 0.473386 0.584859 0.377898 1.019242 1.025770 1.068305 0.984408

0.3 0.485993 0.507966 0.677352 0.358199 1.271396 1.280228 1.343316 1.215900

1/3 0.471585 0.495539 0.684610 0.326480 1.321488 1.330940 1.400772 1.258601

1/3 0.074235 0.063528 )0.026194 0.146200 0.193942 0.189731 0.157113 0.224256

0.4 0.074845 0.069001 0.015855 0.119725 0.196321 0.194031 0.174703 0.215216

0.5 0.075171 0.076559 0.078004 0.079510 0.197608 0.198181 0.198758 0.199338

0.6 0.074729 0.083312 0.139313 0.038419 0.196157 0.199575 0.220039 0.180670

2/3 0.073985 0.087366 0.179878 0.010397 0.193663 0.198970 0.232691 0.166660

2/3 0.468342 0.442009 0.250564 0.606329 1.319278 1.308504 1.237353 1.378206

0.7 0.486902 0.463979 0.293644 0.611847 1.269737 1.260394 1.196796 1.323702

0.8 0.466992 0.453122 0.343164 0.551630 1.018869 1.013334 0.971792 1.056680

0.9 0.321970 0.315722 0.262487 0.364949 0.603063 0.600641 0.580292 0.622886

1 0 0 0 0 0 0 0 0
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that, when b=a ¼ 5, although the cylindrical bending assumption can be adopted for the determination

of plate deflection, it becomes completely unsuitable for calculating the stress component ry . This is

identical to that observed for the elastic plate (Chen et al., 2003). It is also not very accurate to predict

the response of electric potential based on the assumption of cylindrical bending for a rectangular
laminate with b=a ¼ 5.
6. Conclusion

State-space formulations are established for analyzing the bending and free vibration problems of

simply-supported laminated orthotropic piezoelectric rectangular plates. The bonding between any two
adjacent layers can be either perfect or imperfect, which can be represented in a unified model of the general

spring layer, in which the relation between the electric potential and electric displacement in Fan and Sze

(2001) is adopted. The analysis is directly based on the three-dimensional equations of an orthotropic

piezoelectric medium, without introducing any assumptions on the elastic and electric fields. Therefore, the

results presented in this paper are believed to be especially valuable for further studies based on various

two-dimensional approximate theories or numerical methods.

In this paper, attention is only paid to the effect of bonding imperfections on the dynamic and static

behavior of laminated piezoelectric plates. A complete research should necessarily take account of the
mechanism of imperfect bonding, the determination of compliance constants in the spring layer model as

well as other aspects of micromechanics. These topics are however, out of the scope of this paper, and the

reader is referred to Aboudi (1987), Hashin (1990) and Fan and Sze (2001), for example, for the study in

this respect.

It should be pointed out that the spring layer model is only correct within the context of delamination

(shear slip) initiation and on the initial growth response of the delamination (shear slip). For more general

cases, non-linear interfacial constitutive relations should be developed and utilized (Williams and Addessio,

1997). However, the solution presented in the paper can be regarded as a starting point for succeeding
analysis.
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ11 e

ð1Þ
33

q
=ðhq0Þ; (b) �Dzða=2; b=2; zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ11 =e

ð1Þ
33

q
=q0; (c) Dxð0; b=2; zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ11 =e

ð1Þ
33

q
=q0;

(d) Dyða=2; 0; zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ11 =e

ð1Þ
33

q
=q0.
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Table 13

Amplitude of physical quantities at f ¼ 0:5 for a three-ply ([0/90/0�]) PVDF rectangular laminate under sinusoidal mechanical load

(R ¼ 0:6)

a=h Quantity b=h ¼ 4 b=h ¼ 10 b=h ¼ 20 b=h ¼ 50 b=h ¼ 100 b=h ¼ 500

4 �u1 � 1010 0.006012 0.006406 0.006592 0.006728 0.006758 0.006768

�u3 � 1010 1.209096 1.823216 1.893543 1.909291 1.911371 1.912027

�s13 0.958215 1.408143 1.454453 1.464108 1.465346 1.465735

�s33 0.494647 0.499263 0.499920 0.500096 0.500121 0.500128
�/� 103 12.33100 7.123832 5.882902 5.516201 5.463245 5.446270

�D3 � 1010 )0.384767 )0.412157 )0.417392 )0.419565 )0.419958 )0.420091
�s11 0.083829 0.085224 0.086039 0.086669 0.086807 0.086855

�s22 )0.165119 )0.094472 0.010458 0.102537 0.123178 0.130418

�D1 � 1010 0.081218 0.082693 0.080495 0.079677 0.079552 0.079512

10 �u1 � 1010 0.002543 0.003079 0.003217 0.003370 0.003448 0.003486

�u3 � 1010 1.307317 7.112815 9.163009 9.570977 9.617142 9.631190

�s13 0.732875 3.339580 4.129365 4.258685 4.271242 4.274914

�s33 0.495220 0.499560 0.500191 0.500366 0.500390 0.500398
�/� 103 10.28846 11.91559 8.142392 6.461406 6.201763 6.117765

�D3 � 1010 )0.412860 )0.442887 )0.448063 )0.451025 )0.452183 )0.452734
�s11 0.111312 0.110992 0.111286 0.112543 0.113302 0.113688

�s22 )0.186685 )0.171192 )0.122303 0.014415 0.094300 0.134723

�D1 � 1010 0.064976 0.179518 0.200000 0.199810 0.199470 0.199344

W.Q. Chen et al. / International Journal of Solids and Structures 41 (2004) 5247–5263 5261
Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 10372088). One of

the authors (CWQ) would like to express his sincere thanks to Professor Paul Heyliger for his helpful

discussion. The help from two anonymous reviewers are also acknowledged.
Appendix A

The operator matrix M is defined as follows:
M ¼
0 M1

M2 0

� �
;

M1 ¼

1
c55

0 � o
ox � e15

c55
o
ox

1
c44

� o
oy � e24

c44
o
oy

q o2

ot2 0

sym: k4 o2

ox2 þ k5 o2

oy2

2
666664

3
777775;

M2 ¼

q o2

ot2 � k1 o2

ox2 � c66 o2

oy2 �ðk3 þ c66Þ o2

oxoy �b1
o
ox �b2

o
ox

q o2

ot2 � c66 o2

ox2 � k2 o2

oy2 �b3
o
oy �b4

o
oy

e33
a

e33
a

2
66664

3
77775;

ðA:1Þ
sym: � c33
a
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where
a ¼ c33e33 þ e233; b1 ¼ ðc13e33 þ e31e33Þ=a; b2 ¼ ðc13e33 � c33e31Þ=a;
b3 ¼ ðc23e33 þ e32e33Þ=a; b4 ¼ ðc23e33 � c33e32Þ=a;
k1 ¼ c11 � c13b1 � e31b2; k2 ¼ c22 � c23b3 � e32b4;

k3 ¼ c12 � c13b3 � e31b4 ¼ c12 � c23b1 � e32b2;

k4 ¼ e11 þ e215=c55; k5 ¼ e22 þ e224=c44:

ðA:2Þ
The five induced variables are determined by
½rx; ry ; sxy ;Dx;Dy �T ¼ N½u; v; rz;Dz; sxz; syz;w;/�T; ðA:3Þ

where,
N ¼
N1 0

0 N2

� �
;

N1 ¼
k1 o

ox k3 o
oy b1 b2

k3 o
ox k2 o

oy b3 b4

c66 o
oy c66 o

ox 0 0

2
664

3
775; N2 ¼

e15
c55

0 0 �k4 o
ox

0 e24
c44

0 �k5 o
oy

" #
:

ðA:4Þ
The dimensionless constant matrix M is given by
M ¼ 0 M1

M2 0

� �
; ðA:5Þ

M1 ¼

cð1Þ
11

c55
0 �t1 � e15

c55

ffiffiffiffiffi
cð1Þ
11

eð1Þ
33

r
t1

cð1Þ
11

c44
�t2 � e24

c44

ffiffiffiffiffi
cð1Þ
11

eð1Þ
33

r
t2

�j 0

sym: 1

eð1Þ
33

ðk4t21 þ k5t22Þ

2
666666664

3
777777775
;

M2 ¼

jþ k1
cð1Þ
11

t21 þ
c66
cð1Þ
11

t22
c66þk3
cð1Þ
11

t1t2 b1t1 b2

ffiffiffiffiffi
eð1Þ
33

cð1Þ
11

r
t1

jþ c66
cð1Þ
11

t21 þ k2
cð1Þ
11

t22 b3t2 b4

ffiffiffiffiffi
eð1Þ
33

cð1Þ
11

r
t2

� e33c
ð1Þ
11

a � e33

ffiffiffiffiffiffiffiffiffiffi
eð1Þ
33

cð1Þ
11

p
a

sym:
c33e

ð1Þ
33

a

2
66666666664

3
77777777775
;

where t1 ¼ mph=a, t2 ¼ nph=b, j ¼ �X2q=qð1Þ, and X ¼ xh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1Þ=cð1Þ11

q
is the dimensionless frequency.

The state equation for cylindrical bending problem can be derived as
o

oz

u
rz

Dz

sxz
w
/

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

1
c55

� o
ox � e15

c55
o
ox

0 q o2

ot2 0

sym: k4 o2

ox2

q o2

ot2 � k1 o2

ox2 �b1
o
ox �b2

o
ox

e33
a

e33
a 0

sym: � c33
a

2
666666664

3
777777775

u
rz

Dz

sxz
w
/

8>>>>>><
>>>>>>:
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>>>>>>;
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